

 1

Design decisions

� Procedure call

� Rather than message passing or remote fork

� No shared address space

� Emulate local procedure call semantics as
closely as possible

Procedure call chosen as major control mechanism in
Mesa language used

Mesa does have fork, but decided not to use
Does not affect design greatly either way
Shared address space can be done, but difficult to

integrate into programming environment and slow.
RPC is based on the client-server architecture. You

have a server which accepts requests from the
client. The client wants to get the result of a method
which is located on the server, so the client sends
out a request, the method is run on the server, and
the server returns the result. RPC can be done in
many different ways, in this paper the architects
chose to use procedure calls to get the results,
instead of passing messages around the network,
or using remote forks. This RPC has a very small
scope, only the method and arguments is passed,
there is no shared address space *explain shared
address space* Their goal was to emulate local
procedure calls as closely as possible.

 2

RPC architecture

This architecture is based on the concept of �stubs�.
The user call gets passed to the user-stub, which is
passed over the network to the server-stub which is
finally passed to the server to complete the call.

A stub (aka a method-stub) is a piece of code used to
stand in for some other programming functionality.
It is usually used in RPC where the stub simulates
a local procedure call, when really more is
happening.

 3

Service lookup / binding

� Lookup by:

� Type (Grapevine group)

� Instance (Grapevine individual)

� Raw network address (not using Grapevine)

Interface identified by type (e.g. mail server) and
instance (e.g. a particular mail server).

Binding made by client, stored ready for remote
procedure calls. Server does not keep any state (at
least not inherent in protocol) except a single
sequence number

This RPC architecture uses grapevine, mainly for the
reason of 'late binding'. This is where the system
does not know which computer it is calling, until it
needs to. This allows for the computer to not be
defined at compile time. This is similar to DNS,
instead of specifying an IP address, you specify a
domain, this domain can be changed as needed,
which allows more flexibility.

You are able to look up the 'server' which will run the
procedure in three ways - you can specify the
server explicitly (raw network address), name a
group and get a list of instances from that group
(then choose one based on a latency ordering
scheme), or name an instance from the group.

 4

Binding procedure

 5

Security

� Grapevine ACLs ensure that service instances
are genuine (authorized)

� DES for end-to-end encryption, with Grapevine
as KDC for end-to-end enc

ACL - Access control list
DES - Data encryption standard
KDC - Key distribution system
Security is build ontop of Grapevine's existing

security architecture (which normally allows man in
the middle attacks). Grapevine already ensures that
the service instances are genuine (aka authorised).
Dual public-key encryption can be used to ensure
the messages passed are very secure.

 6

Transport protocol

� Custom transport protocol for speed, as too
much overhead in existing bytestream protocols

� Retransmissions for reliability

� Optimised for small, frequent calls

� Calls with many packets slow, especially over high-
latency connections

� No server state between calls except sequence
number

Compare to TCP
No need to open or close connection: server

initialises sequence number on first call received,
discards it after (say) 5 minutes of inactivity as
when there is no longer any danger of receiving
duplicate packets

Small = arguments and return value each fit in a
single packet

No need for acknowledgement packets if call is quick
enough; a few are sent for calls that take a while

For longer procedure calls, probe packets are sent to
ensure the callee has not crashed. After 10 minutes
of probes, the probes are only sent once every 5
minutes.

For multi-packet calls, wait for acknowledgement
after each packet in the call � designed for local
networks & not bulk data

 7

Simple call

 8

Complicated call

 9

Exception handling

� Emulate local (Mesa) exception handling
almost exactly

� Extra call failed exception for RPC failure
(network, server etc.)

Exceptions thrown by the remote procedure treated
similarly to procedure calls in the opposite direction.

 10

Performance

� Thread pool server model

 11

Discussion questions

� How does this RPC framework compare to
modern frameworks?

� Speed, overhead, efficiency

� Client / server state

� Ease of use

� Was it a good idea to use procedure calls as a
basis rather than message passing or remote
forking?

� Is it a good idea to try to emulate local
procedure calls as closely as possible?

 12

Discussion questions

� The authors discuss the possibility of a shared
address space but conclude that it would be too
expensive with their hardware. Is this still the
case?

� Section 1.4 paragraph 3 (page 42)

� The authors mention the possibility of using
their protocol for simple calls and automatically
switching to a more conventional protocol for
complicated calls. Would this be worthwhile?

� End of section 3.3 (page 54)

 13

Discussion questions

� Is it best to have all the objects retained in
memory, or can these be created/destroyed
when used?

� How should procedures be passed? With
pointers?

� Was it correct to use a connectionless protocol,
and implement a connection on top of this?
Similar to UDP instead of TCP? Resend rate?

� Should the objects be used statically, i.e. state
does not matter? Should locks over objects be
implemented?

