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Abstract

Java programs often contain expressions involving method calls that are exe-
cuted many times in a loop but will always return the same value, such as check-
ing the length of a collection through which the loop is iterating. This can help
to make the code readable, but makes it less efficient to execute than it could
be. Current optimising compilers are generally unable to perform loop invari-
ant code motion on such method calls and object field accesses due to a lack of
knowledge of functional purity, aliasing and other information about the pro-
gram structure. We propose that the problems of finding this information and
of using it for optimisation be separated by the use of a number of annotations
which we introduce. We describe under what conditions such optimisations can
be made, and implement our scheme in JKit.
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Chapter 1

Introduction

1.1 Motivation

Many advances in compiler technology have been made over the past years, and these
have improved the performance of Java programs. However, Java and other similar object-
oriented languages continue to grow in popularity for a wide range of applications from
high-end servers serving large numbers of clients to mobile phones with very limited re-
sources.

Many of the programmers writing these applications do not know enough about the
underlying hardware and software to write efficient code, and sometimes the language de-
sign makes it difficult for them to know which approach is more efficient. Arguably they
should not have to worry about issues at this level anyway, but should be free to concen-
trate on higher-level problems while the compiler takes care of the low-level problems of
optimisation. Furthermore, having programmers doing their own manual optimisation at
this level tends to result in less readable code, which is detrimental to maintainability. There
is therefore an increasing need for better compilers that can produce more efficient code
while requiring less low-level work of programmers.

In this project, we look at one aspect of this. We consider how we can move certain
method calls out of loops so that they are executed fewer times, and so make programs
run faster. Existing well-known compiler optimisation techniques are able to move sim-
ple expressions out of loops, but are generally unable to move method calls because of the
unknown side-effects and dependencies that methods may have.

Figure 1.1 shows a simple example of how a programmer might write a loop to iterate
through a collection of some sort. Note that collection.size() is called on each iteration
of the loop, but will always return the same value. We will discuss this more later, but this
is due (among other things) to the fact that TestCollection.size() is a pure method.

TestCollection collection = ...
for (int i = 0; i < collection.size(); ++i) {

System.out.println(collection.get(i));
}

Figure 1.1: A simple loop through a collection, written naı̈vely without any optimisation

If a method call in a loop always returns the same result, such as the call to collection.size()
in our example, then we can make the program faster by moving the call out of the loop.
This is shown in Figure 1.2. To be able to do this safely, we have to know that the call will
not have any side-effects other than returning a value, and that nothing will change between
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iterations of the loop that might cause the value of collection.size() to change.

TestCollection collection = ...
int size = collection.size();
for (int i = 0; i < size; ++i) {

System.out.println(collection.get(i));
}

Figure 1.2: The same loop through a collection, optimised to call collection.size() only
once

While the programmer could make this transformation manually, the original form is
easier to read and write. We would like the compiler to make this sort of transformation
(and many others like it) automatically.

1.2 Contributions

The main contribution from this project is a method of optimising pure method calls by
moving expressions involving them out of loops where possible. This was achieved by the
use of Java annotations to break the problem down into parts. We move some of the work of
analysing the program (such as detecting aliases) to the programmer or to inference systems
which can be developed separately in future projects.

We implemented our optimisation approach in a Java compiler called JKit [1], which is
developed here at VUW as a research compiler. We tested our optimisations with a number
of small test programs and with two larger programs.

There are also a number of minor contributions adding various small features to JKit.
We will list all our contributions in the conclusion of this report.

1.3 Outline

We start in chapter 2 by giving some background information about functional purity, Java
annotations and the JKit compiler in which the optimisations in this project were imple-
mented. We also review some of the existing literature on compiler optimisations and pure
functions. We then discuss in chapter 3 the optimisations which we developed, the anno-
tations which we introduce, and the problems with aliasing which make our task difficult.
Chapter 4 discusses the details of how we implemented these optimisations in JKit, includ-
ing how we added support to JKit for annotations and for preserving information about
loops. It also discusses the flow graph visualisation utility which was developed to aid
debugging of these optimisations. In chapter 5 we discuss the results of evaluating our opti-
misations on a number of simple benchmark programs and on two real programs. Chapter
6 then concludes by summarising our contributions and discussing future work suggested
by our experiences and results in this project.
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Chapter 2

Background

In this chapter we will look at existing compiler optimisations, including loop invariant
code movement in particular. We will explain what it means for a method to be pure, and
look at some of the existing literature relating to pure functions and other related concepts
in various languages. We will then briefly introduce Java’s annotation mechanism (which
we will later use), and the JKit compiler in which we implemented our optimisations in this
project.

2.1 Compiler optimisation techniques

We reviewed the relevant parts of a number of compiler textbooks to get an overview of cur-
rently well-known optimisation techniques. As well as optimisation techniques we mention
data flow analysis here. We do not actually use data flow analysis in this project, but it is
relevant because inferring the annotations which we will discuss later would require data
flow analysis. This possibility is discussed a bit in section 6.2.2 as possible further work.
Here we list the relevant sections to which interested readers may wish to refer for more
background on this area:

• Chapter 9 of [2] (on data-flow analysis) includes a little about interprocedural analysis.
There is also a little about code motion etc., though it is not directly useful to this
project.

• Chapter 18 of [3] on loop optimisations may be useful. The same also has chapter 17
on data-flow analysis.

• [4] has some useful information in chapter 10 about code motion, induction variable
elimination and strength reduction, along with lots of data-flow analysis.

• 16.3 of [5] has some information about loop optimisations (factoring, strength reduc-
tion), and a fair bit of data flow analysis.

The optimisation we implement in this project is a form of loop invariant code motion,
also known as loop factoring or ‘hoisting’. The idea of this optimisation is to find expressions
that always have the same value across all iterations of the loop, and factor them out so that
they are evaluated only once rather than each time through the loop. Such expressions are
said to be loop invariant; code motion refers to the process of moving them. Loop invariant
code motion is traditionally limited to simple arithmetic or logical expressions using built-in
operators. For example, Figure 2.1 shows a simple loop before and after the expression x *
y is factored out. What we add in this project is the ability to move method calls, as well as
field references and array indexing expressions.
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for (int i = 0; i < 10; ++i) {
foo(x ∗ y + i);

}
(a) Before loop invariant code
motion

int xy = x ∗ y;
for (int i = 0; i < 10; ++i) {

foo(xy + i);
}

(b) After loop invariant code
motion

Figure 2.1: An example of traditional loop invariant code motion. The expression x * y is
factored out of the loop so that it is only evaluated once, with the result stored in a new
variable xy for when it is needed.

In [6], Hammond and Lacey looked at applying traditional compiler optimisations (in
particular loop unrolling, loop unfolding and loop invariant code motion) to Java bytecode.
They avoided dealing with method calls, essentially because they did not have a way of
knowing whether the methods were functionally pure. Unlike the authors of this paper
we are able to move expressions containing method calls, at least in some cases. The au-
thors found that the optimisations they performed gave an average 4–5% performance in-
crease across a number of benchmarks, which suggests that such optimisation techniques
are worthwhile.

2.2 Functional purity

Java compilers are limited in how they can move method calls to optimise Java programs
by the fact that methods may in general have side effects. For example a method that returns
a value may also change the value of one of the object’s fields, or even some other state
in an apparently unrelated part of the program. The behaviour of methods may also (in
some cases) depend on the state of parts of the program to which they have no obvious
relationship. For example, a method’s return value might depend on the value of a global
variable (in Java, this means a static field in some class).

In practice, however, many methods are functionally pure: they do not alter any state (so
have no side effects), and they return a value depending only on the arguments passed to
them (including the implicit this parameter). This second condition is sometimes referred
to as functional determinism [7]. In this report we will sometimes abbreviate ‘functionally
pure’ simply to pure.

A range of definitions are possible of what it means for a method to be side-effect free.
For example, Finifter et al. [7] require that side-effect free methods only modify objects
which are created as part of the execution of the method, as well as not causing any side-
effects outside of the language environment except for resource consumption. This defini-
tion is sufficient for our idea of purity. Specifically, we require that pure methods do not
have any side effects that would make it noticeable for the method to be executed a different
number of times, or that might affect the execution of other pure methods.
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2.2.1 Example

In the example class shown in Figure 2.2, the mult method is pure, but the set method is not
pure as it alters the state of the object (a side effect). The multk method is not pure by this
definition either, as it reads a static field which could change, and so may give a different
result even if called with the same arguments and without the object having changed. This
breaks functional determinism.

public class Example {
private int x;
public static int k;

public int mult(int y) {
return x ∗ y;

}

public set(int a) {
x = a;

}

public int multk(int y) {
return x ∗ y ∗ k;

}
}

Figure 2.2: A class with several methods; only the mult method is pure by our definition.

If programmers were to annotate these pure methods as such (or if they could be auto-
matically detected by program analysis), then the compiler would be able to make optimi-
sations which would not otherwise be possible. Such annotations would also be helpful in
making the programmer’s intent and assumptions clear, resulting in more readable code.
We will discuss in section 3.2 the annotations which we introduced for functionally pure
methods, and also for methods meeting a weaker restriction that they not modify the state
of their target.

2.2.2 Object equivalence

To precisely define what a pure function is (in particular for the definition of functional
determinism), it is necessary to define exactly what it means for two return values or argu-
ments to be equivalent. [7] discusses some of the issues here. One question is whether, to be
considered equal, two sets of object references must (a) simply refer to equal objects, (b) refer
to equal objects with the same aliasing relationships, or (c) have the exact same addresses.
These are progressively stronger requirements.

For our part, we leave this decision up to the programmer: as long as the program-
mer chooses a consistent definition, our optimisations will be valid. That is, the program-
mer must use the same definition of equivalence for arguments as for return values when
declaring a function pure, and also must only rely on equivalence as they define it when
using the results returned by pure methods. We suggest that objects with the same values
but different addresses not be considered equivalent in general, as they will behave differ-
ently when compared with Java’s == operator. There may however be some cases where the
programmer can be sure that this will not be a problem, and so can use a looser definition
of equivalence.
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Being able to offer this flexibility is an advantage of our approach (which we discuss in
section 3.2 and later) of having the programmer annotate methods etc. rather than having
these properties automatically inferred or checked.

2.3 Use of pure functions

A moderate amount of work has been done on the use of certain functions marked as pure
in Java and other imperative programming languages. However, this has mostly been for
use in specifications rather than for optimisation, at least in the case of Java.

2.3.1 Pure functions in specifications

In Java, there has been some work done on the use of pure functions for specifications, such
as in Java Modelling Language (JML) [8, 9]. Similar work has been done with Spec#[10] for
C#. These studies have considered various different levels and definitions of purity. Here
we discuss some of these.

Darvas and Müller [11] describe a notion of weak purity that allows methods to construct
new objects and even return them as long as they do not modify pre-existing objects. This
means that a method could return references to different objects when called with the same
arguments. As we discussed earlier, this can result in different behaviour later on in the
program even though both objects will contain the same values, because Java’s == operator
will give different results. The default implementation of Object.hashCode() method in
Java also depends on the memory address of the object.

Naumann [12] gives a definition of observational purity which allows limited modification
of state while still maintaining the effect of purity from the viewpoint of other classes. He
gives a formal definition of this observational purity in terms of equivalence of class imple-
mentations. This may well be a useful approach to take if a formally-verifiable definition of
purity is needed, but in the scope of this project we only need an informal definition.

Leino and Müller [13] have done some work on what they call ‘equivalent-results meth-
ods’ that query a data structure in a consistent and repeatable way. They were able to build
a formal model to verify such methods, and dealt with such issues as methods that allocate
new objects on the heap. The application for which their work was designed was again
program specification, and they mentioned that they planned to implement it in the Spec#
verifier Boogie [14].

Barnett et al. [15] again discuss observational purity for use in specification languages.
They give a weaker notion of purity that allows specifications to do more while still re-
maining safe. They compare their approach to the restrictions made on specifications in
ESC/Java, JML and Eiffel.

2.3.2 Finding pure methods automatically

Finifter et al. [7] have described a way to automatically find functionally pure methods
in programs written in a subset of Java which they call Joe-E. This analysis is based on im-
mutable class types declared by the programmer and object-capabilities enforced by the lan-
guage design. The applications they describe are for security and verifiability of software,
but this purity and immutability information would also be useful for applying optimisa-
tion techniques such as those developed in this project. Their definition of purity seems to
be compatible with the flexible definition made for this project; in fact we based part of our
explanation on this paper.
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Zhao et al. [16] discuss a simple analysis of Java bytecode at runtime in a JIT compiler
to determine whether methods are pure, and using this information to make optimisations
such as constant folding and omission of synchronisation operations. They also use in-
formation provided by the programmer. They achieved by this an average 1.29% speed
improvement across a range of benchmarks.

Both of these approaches seem to be quite limited in the sorts of pure functions they
can find, and both restrict when they can work: the first approach works only on Joe-E
programs, and the second only at runtime, when information about the whole program is
available to the interprocedural analysis.

2.3.3 Other restrictions on functions, and other programming languages

The optimisations in this project require not just information about which functions are pure,
but about how the side-effects of other functions may alter the program state. One useful
class of methods is those that are not necessarily pure in terms of their return value or other
side-effects, but are still guaranteed not to modify the object on which they are called. We
will call these const methods (after C++), although the terminology is not entirely standard.
There is some use both of pure functions and of guarantees like this in existing programming
languages.

• C++ allows member functions to be marked as const if they will not modify the object
they are called on, and so can be called on a constant instance of their class [17]. This
is very much like the @Const annotation that we will introduce in section 3.2.

• GCC allows C functions to be marked attribute ((pure)) if they have no side-
effects and depend only on their parameters and global variables, or attribute
((const)) if they have no side-effects and depend only on their parameters [18, 19].
The latter attribute is the closest to our idea of a pure method. It uses these attributes
to allow common subexpression elimination and loop optimisation, similar to what
we do in this project. Note however that doing such optimisations in C is significantly
easier, as functions are called statically (except for the special case of function pointers)
in contrast to Java’s ubiquitous use of dynamic dispatch. It is also more common in C
to pass arguments by value rather than by a pointer like with objects in Java, which
means that aliasing is less often a problem.

• Fortran 95 (from the earlier High Performance Fortran) allows pure functions to be
marked with the PURE keyword, to allow optimisation of FORALL loops on parallel
systems [20].

2.4 Annotations in Java

This project defines and uses a number of annotations to mark parts of programs.
The annotations mechanism in Java was introduced in JSR-175 [21], and was made part

of the core language specification in Java 1.5. It allows Java developers to define arbitrary
‘annotations’ with which they can then mark various parts of Java programs, such as classes,
methods, variable definitions and so on. Annotations can have arbitrary numbers of pa-
rameters, but the annotations used in this project are all of the simplest variety known as
‘marker’ annotations, which have no parameters [22].

As an example, Figure 2.3 shows a simple class which demonstrates some annotations
of the sorts used in this project: the class Foo, method bar and local variable j are annotated
@Encapsulated, @Pure and @Unique respectively. The meanings of these annotations will be
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explained in chapter 3; for now it is enough to know that Java provides the facility to define
such annotations. Annotations always start with the @ character.

@Encapsulated class Foo {
public @Pure int bar(int i) {

@Unique Integer j = new Integer(i);
return j.intValue();

}
}

Figure 2.3: A class with some annotations

2.5 JKit

JKit [1] is an experimental Java compiler developed at Victoria University of Wellington,
primarily by David Pearce. It is designed to be extensible for research such as this project.
The optimisations described later in this report were implemented as a stage for JKit.

JKit is designed to compile programs in a number of stages. The Java source code to
be compiled is first parsed into an AST, which is then immediately transformed to JKit’s
flow graph intermediate representation (called JKIL, for JKit Intermediate Language) by
JavaFileReader. This flow graph form of the program is then manipulated by a number of
stages to do things such as type checking, expressing complex constructs (foreach loops, for
example) in terms of simpler ones, and making optimisations. The optimisations described
in this report were implemented as a new optimisation stage, called LoopInvariantMovement.
Finally, JKit writes the flow graph out to a Java class file with its ClassFileWriter. It is pos-
sible to use other writers instead for debugging purposes.

A (control-)flow graph is a directed graph of how control may flow through a program
when it is executed. Each vertex will generally correspond to a statement or instruction in
the program. Conditional statements (such as if) result in vertices with out-degree greater
than one as the graph branches (later to rejoin), while loops result in cycles in the graph.
The edges corresponding to such conditional and looping constructs are labelled with the
condition under which that edge is taken, while unlabelled edges represent the normal,
unconditional flow of control.

As an example of the flow graphs that are constructed as the first part of the process
outlined above, Figure 2.5 shows the flow graph that JKit generates from the Java source
code in Figure 2.4. There are a few things worth noting here about how JKit works:

• The numbers like ’:12:7’ at the end of each vertex label indicate the corresponding line
and character in the Java source file.

• To more easily represent the program structure, some vertices do not contain a state-
ment but exist only for structure. These are used for loops and conditionals.

• JKit prefixes each variable name with a number to indicate the scope of the variable.
This allows it to distinguish between two different variables with the same name.
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private static int foo(int x) {
if (x > 16) {

System.out.println(x + ” is too big”);
return −1;

}
else {

int factorial = 1;
for (int i = 1; i <= x; ++i) {

factorial ∗= i;
}
return factorial;

}
}

Figure 2.4: A method for which we will shown a flow graph

'8i = (8i + 1)'::13:29

:13:3

'return (-1)'::9:3

'8factorial = 1'::12:7

'8i = 1'::13:12

'8factorial = (8factorial * 8i)'::14:4

(8i <= x)

:13:3

(8i > x)

'return 8factorial'::16:3

:7:2

(x <= 16)

'java.lang.System.out.println((x ++ ' is too big'))'::8:3

(x > 16)

Figure 2.5: The flow graph for the example method show in Figure 2.4
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Chapter 3

Optimisations: loop invariant code
motion for Java

We will now discuss in detail the approach that we take to determining which method calls
and other expressions can be moved out of loops without changing the semantics of the
program we are trying to optimise. That is to say, we want the program to run in the same
way as far as it can be observed, apart from being faster and perhaps using more or less
memory.

This requires that we find expressions which we can guarantee to be loop invariant: ex-
pressions which will always have the same value across all iterations of the loop. Such
expressions can be moved, or factored, out of the loop. They need only be evaluated once at
the start of the loop, and this value remembered and used whenever the original expressions
would have been used.

We will start by discussing a simple case with array lengths, then talk about how we
annotate pure methods. We will then look at aliasing and how it makes our problem more
difficult, then combine this all and consider under exactly what conditions we can move
calls to pure methods.

3.1 Array lengths

Java arrays have fixed length: once an array has been constructed, values in the array may
be modified but the length of the array always remains constant. Thus Array.length is a
common special case of a field that is invariant as long as the array reference is invariant.
This means that it is a fairly easy candidate for factoring out of loops; more easy than even
pure method calls, which can depend on the internal state of objects. This was the first
useful optimisation developed in this project.

The exact condition is this: an expression foo.length (where foo is an array of some
type) is invariant with respect to a loop (and so can be factored out of the loop) if there are
no assignments to foo within the loop body. That is, there are no statements of the form foo
= ...; Assignments to elements of foo (like foo[i] = ...;) are not a problem as they do
not affect the length of the array.

For example, Figure 3.1 shows a loop where the expression foo.length is invariant and
so can be factored out.
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int[] foo = new int[10];
for (int i = 0; i < foo.length; ++i) {

foo[i] = i;
}

Figure 3.1: A small loop, where the expression foo.length is invariant.

3.2 Annotating pure methods

We annotate functionally pure methods with the annotation @Pure. We also introduce the
@Const annotation for methods which are not pure but nevertheless do not change the state
of their target object. @Const is based on the const attribute of member functions in C++.
Note that all @Pure methods also meet the condition for @Const: @Const is a weaker restric-
tion.

Our idea of an object’s state here is everything about it that a @Pure method might de-
pend on. That is, a method annotated @Const or @Pure must not change anything that might
cause another @Pure method to return a different value. The simplest way to ensure this is
for the method not to change anything at all to do with the object or other objects used in
its internal representation, but we can be a little more flexible and allow such methods to
change certain things (such as cached results of computations, for example) as long as such
changes will not affect the behaviour of @Pure methods called on the object or with the object
as an argument.

As an example, we revisit the example class first given in Figure 2.2. In Figure 3.2 we
annotate this class with our new annotations. We noted in section 2.2 that only mult is
functionally pure. We can however say of the multk method that it does not change the
state of the object, and so it can be annotated as @Const. This comes in handy later on,
when we want to know whether expressions in a loop might modify a particular object. We
have also annotated the class as @Encapsulated; this annotation relates to aliasing and is
explained later on, in section 3.3.2.

public @Encapsulated class Example {
private int x;
public static int k;

public @Pure int mult(int y) {
return x ∗ y;

}

public set(int a) {
x = a;

}

public @Const int multk(int y) {
return x ∗ y ∗ k;

}
}

Figure 3.2: A class with several methods, annotated appropriately.

All 5 annotations which we introduce, including @Pure and @Const, are summarised in
section 3.4.
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3.2.1 Discussion

By this approach of annotating pure methods, we divide the problem up into parts that can
be solved separately. One part is to make some useful optimisations using this information
about functional purity, the other is to derive the information in the first place. In this project
we tackle the first part with our compiler stage while leaving the second to the programmer,
but future projects could look at ways to derive this information automatically. Once such
information is known and the methods are annotated, this knowledge can also be used for
other purposes. For example, we mentioned in section 2.3.1 that pure methods may be used
in specifications; our annotations could be re-used in checking that such specifications are
legal.

3.3 Aliasing

Array.length is a special case because it does not depend on any state of the array that can
change once it is constructed. In general, however, this is not the case: method calls and
field values depend on the state of the objects in question, and this state can be modified by
other methods in the program. A difficulty arises when this modification is made indirectly,
and the possibility of this is called aliasing.

public class TestCollection {
private int size = 0;

public @Pure int size() {
return size;

}

public @Const Object get() {
return new Object();

}

public void add() {
++size;

}

public @Const void print() {
System.out.println(”Collection size = ” + size);

}
}

Figure 3.3: TestCollection class, to be used in the following examples

We will give a number of examples as we explain aliasing in this section; all these exam-
ples will use the test collection class TestCollection defined in Figure 3.3. To start with, let
us consider the easy case, where there is no aliasing. Figure 3.4 shows a simple case where
list.size() can safely be moved out of the loop. Note that this and the examples that will
follow are assumed to be within a method, so list is a local variable. Clearly the list ob-
ject will not change within the loop, as there are no methods at all called within the loop,
except for list.size() which we know to be pure. The list has been freshly created and its
reference kept in a local variable, so there is no way that there can be aliases to it anywhere
else.
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TestCollection list = new TestCollection();

for (int i = 0; i < list.size(); ++i) {
}

Figure 3.4: Simple case that should be optimised

3.3.1 Two problems with aliasing

Aliasing is the situation where there are several different references (perhaps in local vari-
ables, or fields of some object) to the same object. This means that the object can potentially
be modified via any of these references, which makes it harder to tell exactly when a given
object might be modified.

There are two kinds of aliasing that can cause problems for us: aliases to objects which
are directly used in a pure function call, and aliases to objects internal to such objects.

The problem goes like this: suppose we have a local variable foo of type Bar. This local
variable points to some particular instance of the Bar class. We need to work out whether
this object might change within the course of a loop being executed, so that we can know
whether we can safely move expressions which depend on it out of the loop.

At first glance, this might seem fairly straightforward: we simply need to check that foo
will continue to point to the same object, and that no methods are called on foo which will
change the object in any way. The former can be checked by looking for assignments to
foo within the loop body, while the latter can be checked by ensuring that only methods
annotated as @Pure or @Const are called on foo. Figure 3.5, for example, shows a simple
case where list.size() should not be moved. In this case the collection is modified within
the loop by calling list.add(). There is no aliasing, so this is straightforward to detect.

TestCollection list = new TestCollection();

for (int i = 0; i < list.size(); ++i) {
if (i % 2 == 0) {

list.add();
}

}

Figure 3.5: Simple case that should not be optimised, as the object is modified

However, this is not enough. There are still two ways by which the object in question
could be changed.

The first way is if there is some other reference (an alias) to the Bar object, somewhere
other than foo. Such a reference could be in another local variable (such as the example in
Figure 3.6, where there is another variable called alias pointing to the same list as list), a
field in the class being compiled, or some other class somewhere else in the program (like
the example in Figure 3.7, where the Changer object has a reference to the list). The first case
(in another local variable) could probably be detected with some dataflow analysis, but is
still more difficult than in the absence of aliasing. The last case (in another class) is perhaps
the worst, because it means that any method call at all could potentially modify the object
in question.

The second way is similar but a little more subtle: there could be an alias somewhere to
one of the objects which is used inside the object in question to represent its internal structure.
That is to say, class Bar may have a field of type Baz, and there may be another reference
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TestCollection list = new TestCollection();
TestCollection alias = list;

for (int i = 0; i < list.size(); ++i) {
if (i % 2 == 0) {

alias.add();
}

}

Figure 3.6: Case that should not be optimised, as the object is modified via a local alias

TestCollection list = new TestCollection();
Changer changer = new Changer(list);

for (int i = 0; i < list.size(); ++i) {
if (i % 2 == 0) {

changer.change();
}

}
(a) The example itself

class Changer {
TestCollection list;

public Changer(TestCollection list) {
this.list = list;

}

public void change() {
list.add();

}
}

(b) A class used in the above example

Figure 3.7: More complicated case that should not be optimised, as the object is modified
via an alias inside another class

15



to this Baz object somewhere else, through which it may be modified. Figure 3.8 gives an
example of this type of aliasing situation. This is in a sense the reverse of the previous case,
as the collection is changed directly but the pure method is called indirectly — looking at
it a different way, the object on which the pure method is called (the CollectionProxy in
our example) is not itself changed, but an object inside it (the TestCollection) is changed,
which changes its behaviour. Again, this could potentially happen within any method call
in the loop.

In both cases modifications could also be made in another thread, but this does not really
make the situation any worse as the real problem is that whatever method is running in the
other thread has a reference to the object we are worried about. If we can find some way to
prevent aliases, then this will include aliases in other threads.

TestCollection list = new TestCollection();
CollectionProxy proxy = new CollectionProxy(list);

for (int i = 0; i < proxy.size(); ++i) {
if (i % 2 == 0) {

list.add();
}

}
(a) The example itself

class CollectionProxy {
private final TestCollection target;

public CollectionProxy(TestCollection target) {
this.target = target;

}

public @Pure int size() {
return target.size();

}

public @Const Object get() {
return target.get();

}

public void add() {
target.add();

}

public @Const void print() {
target.print();

}
}

(b) A class used in the above example

Figure 3.8: Another case that should not be optimised, as the object inside the proxy is
modified
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3.3.2 Solution: More annotations

Detecting this sort of aliasing automatically is not possible with the usual Java compilation
process, as the compiler only compiles one class at a time. Even if it were possible to anal-
yse the entire program at once (being guaranteed that no more classes would be loaded at
runtime), it would be very time-consuming and use a lot of memory. Aliasing is a hard prob-
lem. In fact, finding possible aliases in a programming language with conditionals, loops
and dynamically allocated recursive data structures is undecidable [23, 24]. This means
that we cannot in general detect aliasing automatically, although it may be possible in some
special cases.

Instead, we introduce more annotations to allow the programmer to indicate when alias-
ing cannot occur and so it is safe for the compiler to make optimisations. These annotations
could also be added by some future tool to detect special cases where the aliasing problem
is easier.

To prevent the first aliasing problem described, we require the programmer to anno-
tate local variables as @Unique to say that they are a unique reference to whatever object
they point to. This means that there cannot be any aliases to it to cause problems. It also
means that the method cannot pass references to the @Unique object out to non-pure meth-
ods, because doing so would allow the reference to escape and lose its uniqueness. Note
that because @Unique references are local variables they are thread-local, and so safe from
other modification even in the presence of concurrency.

For the second problem, we require the programmer to annotate classes as @Encapsulated
to say that they are well-encapsulated: no other classes will have references to the objects
which are referenced in the class’s fields, and so those objects will only be changed by the
object in question. This is similar to saying that all the class’s fields are @Unique, except that
we only apply @Unique to local variables, and in this case it is only aliases outside the class
that are a problem: an @Encapsulated class may have multiple references to its contained
objects, as long as they are all within the main object.

Again, this use of annotations breaks the problem up, so that the problem of finding
potential aliases can be solved separately to our task of actually making our optimisations.
They also offer some flexibility in the definitions. The programmer can choose to take a
looser observational interpretation of these definitions: if there are other references to the
objects but they will not actually be changed via these references, then the @Unique and
@Encapsulated annotations can still be applied even though the conditions defined above
are not strictly met, as it is still safe for the purposes of the optimisation being done.

Discussion

It should be noted at this point that these new annotations (@Unique and @Encapsulated)
provide something a bit like an ownership type-system [25]. A full and verified ownership
system (and immutability [26, 27], for that matter) might well be a better solution. [28] dis-
cusses different ideas of encapsulation and the application of ownership and other schemes
to these. However, ownership and immutability are still very much current research topics
and not mature enough for us to easily use in this project. In particular, JKit does not yet
have support for any ownership system and implementing it would be beyond the scope of
this project.

Uniqueness types are used in functional languages as a way to model side-effects by
having a variable, which can only be referred to in one place at any given time, to represent
the changing global state [29]. This is related to the idea of linear types. AliasJava’s type
system [30] includes a unique annotation for objects that are not shared, among other type
annotations. It combines this idea of uniqueness with ownership for encapsulation.
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3.4 Summary of annotations

Table 3.1 lists the 5 annotations which we have introduced in this project to allow the op-
timisations which we are about to describe to be made. Some of these (@Pure, @Const,
@Immutable) are similar to or the same as other definitions used elsewhere and discussed
in chapter 2. The remaining two annotations (@Unique and @Encapsulated) are somewhat
more original, though still closely related to other ideas of ownership and encapsulation
which we did not have time to fully investigate.

Annotation Type Semantics
@Pure method The method is side-effect free (does not alter any state), and func-

tionally deterministic (its return value depends only on its pa-
rameters, including the receiver).

@Const method The method does not alter the state of its receiver object.
@Immutable class Objects of this class never change once they are constructed.
@Encapsulated class Objects of the class are well-encapsulated, in that their state can-

not change except by calling their methods (not by external refer-
ences to internal objects, for example).

@Unique variable There will be no other references to the object pointed to by the
local variable.

Table 3.1: Annotations introduced

If these annotations are added to the program where appropriate then our optimisations
may be able to apply; if not then our optimisations will not help much or at all but the
program will still be compiled validly.

3.5 Moving pure method calls

We now come to the optimisation of pure method calls, which was the main goal of this
project. In section 2.2 we introduced the idea of pure methods, and in section 3.2 we dis-
cussed our annotations of such methods. We also explained the problem of aliasing in sec-
tion 3.3, and our solution to it by adding more annotations. We will now combine all that to
consider under what circumstances a call to a pure method can safely be factored out of a
loop.

3.5.1 Loop invariance

To be able to move a method call out of a loop, we must make sure that it will have no
side-effects and that it will always return the same value. If the method is pure then this
will be the case if we can ensure that it is always called with the same arguments. 1 When
we say the same arguments, we mean (in the case of object types) that the arguments to
the pure method must refer to the same objects each time, and that these objects must not
be changed between calls. If this is the case, then functional determinism assures us that
the method will always return the same value, and so will be loop invariant. Furthermore
side-effect-freeness assures us that nothing else will be affected by moving the pure method
call as it does not change any state.

1If the method is not pure but is side-effect-free, then we can move it if we can somehow check not just that
its arguments do not change but that no other state that it may access changes within the loop either. This is
much more difficult, especially in the presence of concurrency. We will not consider this.
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Arguments here include both the usual arguments to the method, and the target object
on which it is invoked. For example, in the method call a.get(i), both a and i are con-
sidered arguments for our purposes. The exception to this is static methods, which are not
called on an object and so have no this pointer. Note that pure static methods are no more
allowed to read or modify non-final static fields (on their own class or otherwise) than any
other pure methods. This is because static fields are essentially global variables.

If an argument is of a primitive type, then making sure that it does not change is a
relatively simple task: we just check that the variables involved are not assigned to within
the body of the loop. Compound expressions are handled by recursively checking all parts
involved: for example a * b + c will be loop invariant if a, b and c are all invariant.

If, on the other hand, an argument is of an object type, then we must check not just that
it has the same value in the sense that it is pointing to the same object, but also that the state
of this object does not change. The simplest case for this is if the object is of an immutable
class.

Immutable classes

An immutable class is one whose instances are guaranteed never to change once they are
constructed. Such classes are often used for holding a few values together, such as a vector
or matrix. In this special case it is easy to check that an object will not change within the
body of a loop, as it will never change at all.

We ask programmers to annotate immutable classes with the annotation @Immutable.
Figure 3.9 gives an example of such a class annotated appropriately.

Note that it is not necessary for all the objects within an immutable object to themselves
be of immutable classes; it is enough that the immutable class does not allow them to be
changed. In fact we can see that @Immutable implies @Encapsulated.

public @Immutable class Point {
private final double x, y;

public Point(double x, double y) {
this.x = x;
this.y = y;

}

public @Pure double getX() {
return x;

}

public @Pure double getY() {
return y;

}
}

Figure 3.9: An example of an immutable class

A more general case

Although some classes may be immutable, there are generally many more on which this
restriction cannot be placed. We still want to optimise pure method calls involving such

19



classes, so we need a more fine-grained way of detecting when objects can be guaranteed
not to change.

As discussed in section 3.3, aliasing makes this difficult. In section 3.3.2 we introduced
the @Unique and @Encapsulated annotations to allow us to avoid the problems of aliasing. If
we know that an object will not be changed via aliases, then it can only be changed directly
by calling methods on it, or assigning to its fields. For simplicity we will not talk about the
possibility of assigning directly to fields rather than calling setter methods here; nevertheless
both are considered in our implementation. They are equivalent in effect, so assigning to a
public field on an object can be considered as a special sort of method call on the object.

We have two annotations for methods, introduced in section 3.2: @Pure and @Const. Both
of these imply that the method in question will not modify the state of the object on which
it is invoked. Thus, in the absence of aliases, we can be sure that an object will not change
within a loop as long as only @Pure and @Const methods are called on it.

3.5.2 Summary of method call movement

Method calls (whether in statements or in branch conditions) will be moved out of loops
when the following conditions are met, which are sufficient to guarantee that such move-
ment can safely be made with changing the semantics of the program:

1. The method being called is pure, and

2. For each argument to the method (including the target of the method call, unless the
method is static):

(a) The reference or primitive value (e.g. variable) is invariant within the loop, and

(b) Either:

i. It is a primitive type, or
ii. The class pointed to is immutable (annotated as @Immutable), or

iii. The reference is unique (i.e. it is a local variable annotated as @Unique), there
are no statements in the loop which change the object (that is, only @Pure and
@Const methods are called on the object), and there can be nothing else to
change objects within the object as the class is annotated as @Encapsulated.

Figure 3.10 gives an example of some method calls that can be moved out of a loop and
some that cannot:

1. foo(n) can be moved out of the loop, as ManyMovements.foo is @Pure, while n is in-
variant in the loop and is a primitive type (int).

2. bar.baz() can be moved out of the loop, as Bar.baz is @Pure, bar is invariant and
@Unique, its class (Bar) is @Encapsulated, and there are no calls to other methods on
bar within the loop.

3. foo(i) cannot be moved out of the loop, because i is assigned within the loop (by the
loop increment expression ++i), and so is not invariant.

4. fresh.baz() cannot be moved out, because fresh is assigned within the loop.

5. baa.legs() can be moved out of the loop, because Sheep.legs() is @Pure, baa is
invariant and Sheep is @Immutable.
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public class ManyMovements {
public static void main(String[] args) {

int n = 42;
@Unique Bar bar = new Bar();
Sheep baa = new Sheep();

for (int i = 0; i < 10; ++i) {
int a = foo(n);
int b = bar.baz();

int c = foo(i);
Bar fresh = new Bar();
int d = fresh.baz();

int e = baa.legs();
}

}

private static @Pure int foo(int x) {
return x ∗ 2;

}
}

@Encapsulated class Bar {
public @Pure int baz() {

return 1337;
}

}

@Immutable class Sheep {
public @Pure int legs() {

return 4;
}

}

Figure 3.10: An example of some method calls that can and cannot be moved: foo(n),
bar.baz() and sheep.legs() can be moved out of the loop, while foo(i) and fresh.baz()
cannot be.
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3.6 Chapter summary

In this chapter we started by looking at a simple case of array lengths and how we can move
references to the length field of arrays out of loops under certain conditions. We then went
on to describe our annotations for pure and const methods, with the aim in mind of being
able to move these pure methods out of loops similarly. We then explained the problem of
aliasing, and how it makes it difficult for us to know when objects may change within a
loop. To allow us to determine that certain objects would not change within a given loop
we introduced a number of annotations to describe particular guarantees that can be made
about certain classes and local variables. With this information in hand we were able to find
situations where aliasing would not be a problem, and so we could focus on the problem
of when exactly certain objects can be known not to change within the context of a loop.
Combining this with the information about method purity provided by our first annotations
we were able to specify conditions under which method calls can safely be factored out of
loops.
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Chapter 4

Implementation in JKit

The optimisations developed for this project and described in chapter 3 were implemented
as a stage for JKit. JKit was introduced in section 2.5.

4.1 Architecture

A JKit stage called LoopInvariantMovement was written to implement these optimisations.
JKit runs each method that it compiles through this stage for it to make any desired trans-
formations to the flow graph.

For each loop in the method, it looks for expressions which can be factored out of the
loop. There are two places in which it must do this: in statements on vertices of the flow
graph (which JKit calls points), and on edges of the flow graph, which represent conditions
for looping and conditional constructs. Each suitable expression is then replaced with a new
local variable, and new points are added to the flow graph just before the start of the loop
to initialise these new variables with their respective expressions.

The new variables are named like $invariantx y , where x is the number of the loop
in the method and y is the number of the expression factored. The $ sign ensures that the
new variable does not have the same name as any existing variable, as Java syntax does not
allow variable names to start with $.

Finding expressions to factor is done recursively, such that the largest possible subex-
pression will be factored. If an expression is not suitable to be factored, then its subexpres-
sions are considered in the same way. For example, the expression a.size() + b.size()
may not be invariant as a whole, but the subexpression b.size() might be and so it can be
factored out of the loop.

To be factored out of the loop, an expression must both be invariant with respect to
the loop, and worth factoring. The second condition is necessary so that trivial expressions
(such as literals, for example) are not factored out of the loop: such expressions may well
be invariant, but moving them out of the loop would make performance worse rather than
better due to the overhead of the extra local variable.

An expression is considered worth factoring if it includes a method invocation, field
dereference or array indexing operation. This condition might be worth revisiting to con-
sider including more expressions which are expensive enough that moving them out of
loops would improve performance.

An expression is invariant with respect to a loop if it is one of:

1. A literal (like 42 or "xyzzy").

2. A local variable which is not assigned to within the loop.

23



3. An application of one of the built-in operators (unary, binary or ternary operators, cast,
instanceof) with invariant operands.

4. A dereference of the length field on an invariant array.

5. A dereference of any field on an object reference which is not only an invariant refer-
ence, but points to an object which does not change during the loop (explained in the
next paragraph).

6. A pure method call, where all the arguments (including the target object) are invariant
references to objects which do not change during the loop (or are primitive types).

7. An array indexing expression where the array is an invariant reference to an unchang-
ing array, and the index is invariant.

These conditions are checked by the LoopInvariantMovement.isInvariantReferencemethod.
Several of these conditions require checking that a particular object, to which a reference

refers, does not change within the scope of the loop. This is the situation discussed in section
3.5.1. Firstly, the reference must be invariant as defined above. Then it must also be either:

1. A primitive type (not actually a reference, just a value).

2. A reference to an object of a class which is annotated @Immutable.

3. A unique reference (i.e. a local variable annotated as @Unique) to an object, where there
are no statements in the loop which change the object (that is, only @Pure and @Const
methods are called on the object), and there can be nothing to change objects within
the object as the class is annotated @Encapsulated.

4. A unique reference to an array, where there are no statements in the loop which change
the array (that is, there are no assignments to elements of the array).

This is checked by the LoopInvariantMovement.isInvariantReferenceToUnchangingObject
method.

If two or more loops are nested, then we consider them in order from the outside in,
with the innermost loop being considered last. This allows us to factor expressions out of
as many levels of loops as possible. From the point of view of the optimiser a loop is just
a set of statements (and edge expressions) with a distinguished head node. All statements
within the inner loop are also within the outer loop, so no special cases are needed to deal
with nested loops. For example, in Figure 4.1 we have two nested loops. The expression
test.length is invariant with respect to not just the inner loop but also the outer loop, so it
can be factored out of both and evaluated once outside the outer loop.

4.2 Adding support for annotations

When this project was begun, JKit did not have any support for Java annotations (described
in section 2.4) — it parsed them, but then ignored them completely. It was therefore neces-
sary to add support for annotations to JKit. This required extending the flow graph classes
to allow annotations to be attached to methods, classes and local variables, and then extend-
ing the JavaFileReader to take annotations from the AST and store them in the flow graph.
The optimisation stages such as ours can then read the annotations from the flow graph as
they need.

24



public class NestedFactoring {
public static void main(String[] args) {

int[] test = new int[10];

for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 10; ++j) {

System.out.println(test.length);
}

}
}

}

Figure 4.1: NestedFactoring example program: The expression test.length can be fac-
tored out of both loops.

I have added only basic support for annotations on methods, classes and local variables.
The way I have done this is not very general, it does not support annotations with pa-
rameters, and it does not check that the annotations used have been declared. Nor does it
support reading and writing annotations from and to class files, so it is necessary to compile
all annotated source files at the same time for their annotations to be able to be used for
our optimisations. It will need to be extended or rewritten at some point, but it is perfectly
sufficient for what I needed to do for this project.

4.3 Marking loop bodies

Optimisation stages in JKit work on the flow graph form which JKit uses as its interme-
diate representation. While this in many ways makes it easier to analyse the structure of
programs, it does make it a lot harder to reconstruct high-level information about control
structures such as loops. To solve this, the part of JKit that generates the flow graph from the
AST was modified to save information about each loop (which would otherwise be thrown
away) in a region. Regions are a concept that already existed in JKit, but were previously
only used for storing information about exception handling. I created a new type of region
to be used to store this information about loops.

Each region stores the set of all points that are part of the loop, and the distinguished
point which is the entry point of the loop. This information is needed to be able to scan
through loops to find expressions to factor, statements that might modify certain objects,
and so on.

Figure 4.2 illustrates the two loop regions that would be generated for the small program
with nested loops shown in Figure 4.1. Note that the region for the inner loop is a subset of
the region for the outer loop.

Due to time constraints we only implemented the creation of loop regions for for and
while loops, but it would be straightforward to add support for do-while and foreach
loops too.

4.4 Flow graph visualisation

As we mentioned in section 2.5, JKit uses flow graphs for its intermediate representation
of each method, and so this is what the optimisation stage for this project manipulates and
transforms. For testing and debugging it is useful to be able to see exactly what these flow
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(3i < 10)

:6:3

:6:3

(5j >= 10)

'java.lang.System.out.println(3test[int[]].length)'::7:4

(5j < 10)

'3i = (3i + 1)'::5:28

'return'::5:2

:5:2

'5j = 0'::6:12

:5:2

(3i >= 10)

'3test[int[]] = new int[10]'::3:8

'3i = 0'::5:11
'5j = (5j + 1)'::6:29

Figure 4.2: Flowgraph for the NestedFactoring example. The loop regions corresponding
to each of the two nested for loops are circled with dotted lines. One of these regions is a
subset of the other, corresponding to the nesting of the loops.

graphs are and how the optimisation stage changes them. Therefore, I wrote a small amount
of code to output the flow graph from JKit to the .dot file format used by Graphviz[31]. I
then rendered them with dot (from the Graphviz package), to produce diagrams such as
Figures 2.5 and 4.2.

This is a fairly straightforward procedure; JKit’s representation of the flow graph is sim-
ply dumped to the standard output stream in the appropriate format before and after run-
ning our optimisation stage on each method. Each point in the flow graph is written out as
a vertex with its hashcode as id and the string representation of its contents as label. Edges
are edges, with their condition (if any) as label. We did create a small (one line) shell script
to strip out some of the unnecessary verbosity of JKit’s string representation of expressions,
but this was very much ad-hoc. Nonetheless, we found this visual representation of JKIL
quite helpful in understanding how our optimisations were or were not working while we
were developing them.
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Chapter 5

Evaluation

We tested our optimisations firstly on a number of small benchmark programs written
specifically for the purpose, and secondly on some larger existing programs to which we
had to add annotations. Here we will discuss the details and results of these tests.

5.1 Benchmarks

Here we will discuss the test programs that we used, how we conducted our tests, and then
our results.

5.1.1 Benchmark programs

Five simple programs were written to test the performance improvements provided by our
optimisations in a number of situations which we expected to be amenable to such optimi-
sation.

SimpleLoop

This program (shown in Figure 5.1) simply loops through a dummy collection, calling the
size() method each time through the loop as part of the loop condition. It does not modify
the collection (or do anything else) within the loop body, so these calls can be factored out
of the loop. This leaves a truly trivial loop.

Our first version of this program did not use the CollectionInterface interface, but
simply had list be of type TestCollection. In this case, however, the HotSpot VM’s JIT
compiler was apparently able to do some degree of optimisation which hid the effect of our
loop factoring optimisation. We suspect that it was inlining1 the size() method and then
perhaps simplifying the loop. For it to be able to do this, however, it had to be able to stati-
cally determine which size() method was being called, which in turn required it to know
at compile time the runtime class of list. We made the test program more difficult by cre-
ating the CollectionInterface interface (of which TestCollection is an implementation)
and declaring list to be of type CollectionInterface. This prevents the JIT compiler from
statically resolving the dynamic dispatch for the size() method call, and so prevents it from
inlining the method (or whatever else it was doing).

1To inline a method call is to replace the call with the code of the method itself.
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public class SimpleLoop {
public static void main(String[] argv) {

System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);

}

private static long test() {
@Unique CollectionInterface list = new TestCollection(1000000000);

long startTime = System.currentTimeMillis();
for (int i = 0; i < list.size(); ++i) {
}
return System.currentTimeMillis() − startTime;

}
}

Figure 5.1: SimpleLoop benchmark: Here the expression list.size() can be factored out
of the loop, as it is a pure method and the list is not modified in the loop.

SimpleLoopArray

This program is shown in Figure 5.2. This is similar to the previous program, but uses an
array rather than a collection class. Here the expression to be factored was Array.length
rather than a method call, and so the speed improvement was less pronounced. Note that
we do not need to know whether array is a unique reference, as the length of an array
cannot change anyway.

public class SimpleLoopArray {
public static void main(String[] argv) {

System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);

}

private static long test() {
char[] array = new char[500000000];

long startTime = System.currentTimeMillis();
for (int i = 0; i < array.length; ++i) {
}
return System.currentTimeMillis() − startTime;

}
}

Figure 5.2: SimpleLoopArray benchmark: The expression array.length is invariant in the
loop and can be moved out.

NestedProduct

This program (Figure 5.3) takes two char arrays of numbers (all 0 as it happens, but this
should not matter to the optimisation), and finds the sum of all products of a number from
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the first array with a number from the second. It does this with two nested loops, one for
each array.

In this case not only can dereferences of Array.length (i.e. a.length, b.length) be
factored out of both loops, but also the expression a[i] indexing the outer array can be
moved out of the inner loop. However, to do this we do need to know that a is a unique
reference, as — unlike the length of the array — elements of the array can be changed.

public class NestedProduct {
public static void main(String[] argv) {

System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);

}

private static long test() {
@Unique char[] a = new char[10000];
@Unique char[] b = new char[20000];

int sum = 0;

long startTime = System.currentTimeMillis();
for (int i = 0; i < a.length; ++i) {

for (int j = 0; j < b.length; ++j) {
sum += a[i] ∗ b[j];

}
}
return System.currentTimeMillis() − startTime;

}
}

Figure 5.3: NestedProduct benchmark: a.length and b.length can be factored out of both
loops, while a[i] can be factored out of the inner loop.

NestedListProduct

This is the same as the previous program, except using our ‘collection’ class rather than
arrays. See Figure 5.4. Similarly to the previous case, we can move a.size() and b.size()
out of both loops, and a.get(i) out of the inner loop.

IntersectSquares

This program (Figure 5.5) constructs a number of rectangles with (pseudo-)random posi-
tions and sizes, then counts the number of times they intersect each other. For consistency
the pseudo-random-number generator is seeded with a constant at the start of the program,
so it always constructs the same rectangles. Rectangle is an @Immutable class with @Pure
methods, implemented as the method names suggest.

In this case, rather like in the case of NestedProduct, some of the expressions indexing ar-
rays and then calling a method on the result can be factored out of the inner loop. For exam-
ple, rectangles[i].getX() can be factored out of the inner loop, as can rectangles[i].getX()
+ rectangles[i].getWidth() be. In all there are 16 expressions involving method calls
and array indexing operations that can be factored out of one or other of the loops, and 6
involving array lengths.
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public class NestedListProduct {
public static void main(String[] argv) {

System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);

}

private static long test() {
@Unique TestCollection a = new TestCollection(10000);
@Unique TestCollection b = new TestCollection(20000);

int sum = 0;

long startTime = System.currentTimeMillis();

for (int i = 0; i < a.size(); ++i) {
for (int j = 0; j < b.size(); ++j) {

sum += a.get(i) ∗ b.get(j);
}

}

return System.currentTimeMillis() − startTime;
}

}

Figure 5.4: NestedListProduct benchmark: a.size() and b.size() can be factored out of
both loops, while a.get(i) can be factored out of the inner loop.

5.1.2 Methodology

Each test program was compiled with Sun’s standard javac compiler, and with JKit using
our optimisations. The resulting class files were then each run with Sun’s HotSpot Java 6
VM [32] and with the Kaffe JVM [33]. In particular, this version of HotSpot:

andrew@rise:test cases$ java -version
java version "1.6.0_03-p3"
Java(TM) SE Runtime Environment (build 1.6.0_03-p3-mark_07_feb_2008_10_42-b00)
Java HotSpot(TM) Client VM (build 1.6.0_03-p3-mark_07_feb_2008_10_42-b00, mixed mode)

And this version of Kaffe:

andrew@rimu:~/COMP489/test cases$ kaffe -version
java full version "kaffe-1.4.2"

kaffe VM "1.1.8"
[...]
Engine: Just-in-time v3 Version: 1.1.8 Java Version: 1.4
Heap defaults: minimum size: 5 MB, maximum size: unlimited
Stack default size: 256 KB

Although HotSpot is a widely-used VM on desktop computers, mobile devices such
as cellphones must run considerably lighter-weight VMs due to memory restrictions and
architecture support. Such VMs will likely not have as much ability to optimise code in
their JIT compiler (if they even do JIT). We chose Kaffe as a representative of this situation:
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public class IntersectSquares {
public static void main(String[] argv) {

System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);
System.out.println(test() + ” ms”);

}

private static long test() {
final int NUM RECTS = 100000;
final int WIDTH = 5000;
final int HEIGHT = 30000;
final int MAX WIDTH = 10;
final int MAX HEIGHT = 10;

final Random rand = new Random(123);

long startTime = System.currentTimeMillis();

//Generate random rectangles
@Unique Rectangle[] rectangles = new Rectangle[NUM RECTS];
for (int i = 0; i < rectangles.length; ++i) {

rectangles[i] = new Rectangle(rand.nextInt(WIDTH),
rand.nextInt(HEIGHT), rand.nextInt(MAX WIDTH),
rand.nextInt(MAX HEIGHT));

}

//Count intersections
int intersections = 0;
for (int i = 0; i < rectangles.length; ++i) {

for (int j = i + 1; j < rectangles.length; ++j) {
if (

((rectangles[j].getX() >= rectangles[i].getX() &&
rectangles[j].getX() <= rectangles[i].getX() + rectangles[i].getWidth())

|| (rectangles[i].getX() >= rectangles[j].getX() &&
rectangles[i].getX() <= rectangles[j].getX() + rectangles[j].getWidth()))

&& ((rectangles[j].getY() >= rectangles[i].getY() &&
rectangles[j].getY() <= rectangles[i].getY() + rectangles[i].getHeight())

|| (rectangles[i].getY() >= rectangles[j].getY() &&
rectangles[i].getY() <= rectangles[j].getY() + rectangles[j].getHeight()))

) {
++intersections;

}
}

}

System.out.println(intersections + ” intersections”);

return System.currentTimeMillis() − startTime;
}

}

Figure 5.5: IntersectSquares benchmark
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although it is not widely used on such devices, it does do less optimisation than HotSpot,
and so should benefit more from our compile-time optimisations.

The runs with HotSpot were made on a 2.8 GHz Pentium D with 2 GiB of RAM running
NetBSD. Kaffe was not available on this machine, so the tests with Kaffe were made on a
1.6 GHz Celeron M with 2 GiB of RAM running Linux. It is not our intention to compare
performance between HotSpot and Kaffe, but rather to look at the relative performance of
the optimised and unoptimised versions of the test programs in each of these JVMs.

The test programs were written to run their respective tests 3 times and report times for
each run. Each test program was run twice with each combination of compiler and JVM,
giving a total of 6 times for each. These 6 measurements were then averaged to get the
results shown in the next section.

5.1.3 Results

Figure 5.6 and Figure 5.7 show the running times for each benchmark with and without
our optimisation, with each VM. In many cases the improvement is more pronounced when
running with Kaffe, as expected due to Kaffe’s lesser degree of optimisation in its JIT com-
piler. The average improvement over the 5 programs was a 26% decrease in running time
for HotSpot and 38% for Kaffe.

The improvement is most striking for the SimpleLoop test, as the loop here really does
nothing but call the size() method that is factored. There is still a noticeable improvement
in the other cases, except for SimpleLoopArray with Kaffe.

Kaffe did not manage to run all the tests all the time. On SimpleLoopArray it would use
a lot of memory (significantly more than HotSpot), and consequently swap a lot. It would
also segfault in some cases. We suspect this is because its garbage collector is not as good as
HotSpot’s. SimpleLoopArray does allocate a 500 MB array for each test run, and if this were
not garbage collected before the next run through then memory usage would increase a lot.
We think that this is responsible for skewing the measurements and making the optimised
version of SimpleLoopArray slower to run with Kaffe than the unoptimised version.

It was also necessary to use a simpler version of IntersectSquares with Kaffe, as Kaffe
was much slower than HotSpot to run this test (around 15 times slower on the unoptimised
version). In particular, it was reduced to 10000 rectangles (rather than 100000) and a height
of 5000 was used rather than 30000 so as to have a reasonable number of rectangles still
intersect. 3290 rectangles were found to intersect in the original version, and 205 in the
version used with Kaffe.

5.2 Case studies

To get a better idea of how much our optimisations would improve the performance of real
programs, we tested them with two programs written by other people. Because it is neces-
sary to add annotations to the programs for our optimisations to work, and because adding
these annotations requires the programmer to understand how the program works, it was
necessary for us to choose fairly small programs. We chose two, which we will describe
below. In both cases we added our 5 annotations from section 3.4 where appropriate, and
also made some minor refactoring in some cases to make the program more amenable to
optimisation.

Unfortunately, the results were not as good as we had hoped.
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Figure 5.6: Run times with Sun HotSpot VM. The times for IntersectSquares were divided
by 50 so as to fit on the graph.
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Figure 5.7: Run times with Kaffe VM. A different version of IntersectSquares was used here,
see the text.
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5.2.1 SimpleLisp interpreter

SimpleLisp [34] is a simple LISP interpreter written by David Pearce. We only considered
the interpreter itself (2086 lines of code in 20 source files, with a total of 31 classes) and not
the GUI, as it is easier and more accurate to make performance measurements when there is
no user interaction to interfere with the measurement process. We only added annotations
and did not otherwise refactor the program. We wrote a test program in LISP with which
to test the interpreter; this program simply adds a large number of integers. We also tested
the interpreter with the Fibonacci number program provided with it, though with the input
hardcoded rather than read from the user so as not to interfere with timing.

Once appropriately annotated, there were a reasonable number of places where our
optimisations were able to be applied: 30 expressions involving field dereferences (16 of
Array.length, but also 14 involving other fields) were factored out of loops, and 8 involv-
ing method calls. All of these method calls were to LispList.size().

However, despite all these changes made to the program, there was no noticeable speedup
when running our test LISP programs. This seems to be because the optimisations were
made in parts of the interpreter which are not actually executed very often or at least do
not take a very large proportion of execution time. This was true even for the addition test
program, which was chosen because the arithmetic functions were one place where some
minor optimisations were made. This is a little disappointing, but perhaps to be expected.

5.2.2 GeoffTrace

GeoffTrace is a simple raytracer (487 lines of code in 8 source files, making 8 classes) written
in Java by Geoffrey Spurr and provided to us as a potentially suitable program with which
to test our optimisations.

Unfortunately, due to a number of bugs in JKit (involving left associativity of arithmetic
operators, the use of continue statements in foreach loops, and abstract methods) it was
necessary to rewrite parts of the program to avoid these operations before the program
could even be compiled correctly by JKit. That done, we added our annotations and did a
little refactoring of some classes to make them more functional in style and so more likely to
be open to loop factoring of pure methods.

After all this, however, no cases were found where our optimisations would apply. This
is due partly to what the raytracer needs to do, and partly to the style in which it is written. It
was not written in a very functional style, and it was already fairly well optimised manually,
so there were no cases where our techniques could make improvements.

While this outcome was disappointing, it did serve to emphasise that our optimisation
is most applicable for programs written in a fairly functional style. Such a style is also likely
to be easier to read and reason about, so encouraging it is worthwhile both in mind of our
optimisation techniques and besides.
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Chapter 6

Conclusions

We now conclude by summarising the contributions of this project and considering possible
directions for future work.

6.1 Contributions

The major contributions of this project were:

1. Defining when it is possible (while compiling Java programs) to move expressions
containing the following out of loops:

(a) Dereferences of Array.length

(b) Pure method calls

(c) Field dereferences, and array indexing expressions

2. Implementing these optimisations in JKit.

3. An experimental study of the effects of these optimisations on runtime performance
of a number of small test programs with two different JVMs.

4. Study of the application and effects of the optimisations to two real programs.

There were also a number of minor contributions:

1. Implementing a simple system for rendering flow graphs automatically from JKit’s
internal representation of Java methods, using Graphviz[31], for understanding and
debugging the code movement performed by our optimisations.

2. Implementing (limited) support for method, class and variable annotations in JKit.

3. Implementing loop regions in JKit to keep track of loops when moving from the AST
to the JKIL flow graph.

6.1.1 Limitations

For simplicity we ignored a few minor issues in our design and implementation. These
would need to be done for a full practical implementation of our techniques, but should not
be particularly difficult:

• JKit should load and save annotations from and to class files, rather than only reading
them from source files.
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• Foreach loops and do-while loops should be supported in addition to for loops and
while loops.

6.2 Future work

There are a number of ways forward from this project, both in extending our approach to
other optimisation techniques than loop invariant code movement, and in looking at other
ways to get the information needed to make our optimisations.

6.2.1 Common subexpression elimination

In this project we looked at expressions that are invariant within loops. Another similar op-
timisation technique is to find common subexpressions within larger expressions or blocks
of code, and (assuming they all evaluate to the same value) factor them out. Just like loop
invariant code motion, current implementations of common subexpression elimination are
generally limited to fairly simple expressions such as built-in arithmetic operators. How-
ever, the same approach that we took to loop invariant code motion of method calls should
be able to be applied here with only minor changes, building on existing well-known tech-
niques for common subexpression elimination [35]. This would allow pure methods which
are common subexpressions to be eliminated under appropriate conditions (very much like
the conditions required for our optimisations in this project).

For example, Figure 6.1 shows a few lines of a program where list.size() is used
several times but will always have the same value. We can optimise this (as shown in Figure
6.2) by only calling list.size() once, storing the result in a new local variable, and reusing
this value where it is needed.

TestCollection list = ...

int a = list.size() ∗ 3;
int b = f(list.size()) − g(list.size() + 2);

Figure 6.1: A small code snippet where list.size() is a common subexpression.

TestCollection list = ...

int listSize = list.size();
int a = listSize ∗ 3;
int b = f(listSize) − g(listSize + 2);

Figure 6.2: The same code snippet, with the common subexpression eliminated.

6.2.2 Automatically deriving annotations

We used annotations in this project to separate the various problems of finding which meth-
ods are pure, where aliases can and cannot occur and so on from our main task of making
loop optimisations using this information. We (as the programmer of the various programs
with which we tested our optimisations) added these annotations manually. It would be
nice for this process to be automated.
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Unfortunately, this is not possible in general: we mentioned in section 3.3.2 that the
aliasing problem is undecidable, and even for some of the other annotations which are not
undecidable per se we generally do not have enough information at compile time to be
able to infer them completely automatically with no input from the programmer. Part of
the problem is that Java programs may be compiled in separate parts without information
available about all classes that will be used at runtime. Because subclasses may be used in
place of their superclasses this means that we cannot necessarily predict the behaviour of an
object we are passed just by looking at how its class is written: we could find at runtime that
we are given a subclass which we were not aware of when compiling the method that uses
the object. The exception to this is final classes, which are guaranteed not to have subclasses.

However, despite all these limitations, it may well be possible to automatically derive
some of our annotations in some special cases, and to provide some level of checking that
annotations provided by the programmer are correct (or at least possibly correct). Subclass-
ing, including the possibility of subclasses that are not known at compile time, makes this
difficult. In the case of final classes, it should be possible and fairly simple to check whether
methods can be annotated @Const by looking at what they do to fields on their object. Check-
ing whether a method can be annotated @Pure would be a little harder, but still feasible: as
well as meeting the requirements for @Const it would be necessary to make sure that it does
not modify or read static fields anywhere nor call any methods which are not themselves
@Pure. A final class can be annotated @Immutable at least in the case that all its fields are
final and of primitive or immutable types.

It would also be a good idea to annotate @Pure and @Const methods in the standard
libraries, probably through a combination of automatic inference and manual work.

This automated derivation of annotations would sacrifice the flexibility that is allowed
by the programmer making the annotations, though it could be combined with manual
annotation to regain some of this flexibility where needed.

6.2.3 Using immutable and ownership types

We noted in section 3.3.2 that ownership and immutable types might provide a better way
to avoid aliasing problems. It would be worthwhile to investigate the different type systems
available that provide support for ownership and immutability. The guarantees provided
by such a type system may well be sufficient to identify situations where objects cannot be
changed via aliases and so can be guaranteed not to change within the scope of a certain
loop. The type system used in AliasJava [30] would also be worth further consideration.

If ownership and immutability become popular and widely used in real programs then
our making use of them would require less extra work of the programmer than our current
approach with our @Unique, @Encapsulated and @Immutable annotations, as programmers
would already be providing the necessary information.

As yet, however, ownership and immutability are not used very widely, and it remains
to be seen whether they are practical for use outside of academia.
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